X
تبلیغات
داش مهندس - ترانزیستور

داش مهندس

هرچی از برق قدرت بخوای هست

ترانزیستور

اولین ترانزیستورها

در اولیــن ماههــای سـال ۱۹۴۸ نخسـتین نمـونـه از یـک ترانزیـسـتـور(Transistor) که بدنه فلزی داشت در مجموعه آزمایشگاه های Bell ساخته شد. این ترانزیستور که قرار بود جایگزین لامپهای خلاء - الکترونیک - شود Type A نام گرفت. این ترانزیستور که کاربرد عمومی داشت و بسیار خوب کار می کرد یکسال بعد به تعداد ۳۷۰۰ عدد تولید انبوه شد تا در اختیار دانشگاه ها، مراکز نظامی، آزمایشگاه ها و شرکت ها برای آزمایش قرار گیرد.

بازسازی اولین ترانزیستور جهان                اولین نمونه ترانزیستور بدنه فلزی

جالب آنکه این اختراع در زمان خود آنقدر مهم بود که هر عدد از این ترانزیستورها در بسته بندی جداگانه با شماره سریال و مشخصات کامل نگهداری می شد. همانطور که در شکل مشاهده می شود این ترانزیستور تنها دارای دو پایه بود. Collector و Emitter و پایه Base به بدنه فلزی آن متصل بود.

تولید ترانزیستورهای بدنه فلزی تا سال ۱۹۵۰ ادامه داشت تا اینکه در این سال در آزمایشگاه های Bell اولین ترانزیستور با بدنه پلاستیکی ساخته شد. طبیعی بود که در اینحالت ترانزیستور می بایست سه پایه داشته باشد. اما به دلیل مشکلاتی که در ساخت این ترانزیستور وجود داشت تولید آن به حالت انبوه نرسید و در همان سال ترانزیستور های جدید دیگری با پوشش پلاستیکی جایگزین همیشگی آن شدند.

اولین نمونه ترانزیستور بدنه پلاستیکی

 

اولین نمونه ترانزیستور بدنه پلاستیکی

لازم به ذکر است که به عقیده بسیاری از دانشمندان، ترانزیستور بزرگترین اختراع بشر در قرن نوزدهم بوده که بدون آن هیچ یک از پیشرفت های امروزی در علوم مختلف امکان پذیر نبوده است. تمامی پیشرفت های بشر که در مخابرات، صنعت حمل و نقل هوایی، اینترنت، تجهیزات کامپیوتری، مهندسی پزشکی و ... روی داده است همگی مرهون این اختراع میباشد.

 نمونه اصلاح شده بدنه پلاستیکی

نمونه اصلاح شده بدنه پلاستیکی

ترانزیستور وسیله ای است که جایگزین لامپهای خلاء - الکترونیک - شد و توانست همان خاصیت لامپها را با ولتاژهای کاری پایین تر داشته باشد. ترانزیستورها عموما" برای تقویت جریان الکتریکی و یا برای عمل کردن در حالت سوییچ بکار برده می شوند. ساختمان داخلی آنها از پیوندهایی از عناصر نیمه هادی مانند سیلیکون و ژرمانیوم تشکیل شده است.

ریزپردازنده ها به صورت یک جزء لاینفک در بسیاری از محصولاتی که ما هرروزه از آن ها استفاده می کنیم در آمده اند ، مانند تلویزیون ، اسباب بازی ها ، رادیو ، و البته کامپیوترها . ولی این ترانزیستورها هستند که اجزای اصلی ریزپردازنده ها را تشکیل می دهند .

در پایین ترین سطح خود ، ممکن است ترانزیستورها به نظر ساده برسند . اما تولید آن ها عملاً به سال های سال تحقیقات کشنده نیاز داشته است. تا پیش از ترانزیستورها ، کامپیوترها به لامپ های خلاء و کلید های مکانیکی متکی بودند. در سال 1958 تعدادی مهندس ( که یکی از آن ها به نام رابرت نویس ، بعداً پایه گذار شرکت اینتل شد ) دست به دست هم دادند تا 2 ترانزیستور را روی یک قطعه بلور سیلیکون بکارند و اولین مدار مجتمع را بسازند؛ چیزی که به ساخت ریزپردازنده منجر شد .

ترانزیستورها در واقع کلیدهای قطع و وصلِ برق در ابعاد مینیاتوری هستند . اگر ریزپردازنده را یک «ساختمان» در نظر بگیرید ، ترانزیستورها، حکم آجری را دارند که برای بنای این ساختمان باید روی هم گذاشته شوند.

درست همانند یک کلید ساده ی چراغ ، ترانزیستورها در دوحالت کار می کنند: حالت وصل، و حالت قطع. این حالت قطع یا وصل ، یا خاموش و روشنِ ترانزیستورهاست که امکان پردازش اطلاعات را فراهم می سازد .

● یک کلید ساده ی برقی چطور کارمی کند ؟

تنها چیزی که کامپیوترها از آن سردر می آورند ، سیگنال های الکتریکی است که قطع و وصل می شوند . برای درکِ بهتر ترانزیستورها ، لازم است بفهمید که یک مدار قطع و وصل الکترونیکی چه طور کار می کند . مدارات قطع و وصل الکترونیکی از اجزای مختلفی تشکیل می شود. یکی ، مسیر جریان است که جریانِ الکتریکی عموماً از طریق یک سیم در آن گردش می کند.

دیگری ، خودِ کلید یا سویچ است ؛ وسیله ای که گردش جریان الکتریکی را شروع و متوقف می کند، آن هم یا با بازگذاشتن مسیر جریان یا مسدود کردن آن. ترانزیستورها هیچ قطعه ی متحرکی ندارند و تنها با علایم الکتریکی قطع و وصل می شوند. قطع و وصل شدنِ ترانزیستورها ، کار ریزپردازنده ها را میسر می سازد .

● ترانزیستور چطور از عهده ی اطلاعات برمی آید ؟

شمارنده ی باینری چیزی است که فقط دارای دو حالت است ، درست مانند ترانزیستور. حالت «وصل» ترانزیستور را با 1 نشان می دهند و حالت قطع آن را با 0 . ردیف های مشخصی از الگوی 1ها و 0هایی که به وسیله ی ترانزیستورهای متعدد تولید می شوند ، می توانند نشان دهنده ی حروف ، اعداد ، رنگ ها ، و خطوط باشند. به این می گویند دستگاه باینری.

( دستگاه باینری ، یک روش شمارش است که فقط از دو رقم 0 و 1 تشکیل شده است و تمام اعداد فقط با این دو رقم نمایش داده می شوند .)

● اسم خود را برحسب باینری هجی کنید

هر حرف الفبا یک معادل باینری دارد . اطلاعات پیچیده تری را نیز می توان با حالت قطع و وصل یا حالتِ باینری ترانزیستور ها تولید نمود؛ مانند گرافیک ، صوت ، و ویدیو .

● نیمه هادی ها و جریان الکتریسته              

با اضافه کردن چند نوع ناخالصی معین به سیلیکون یک ترانزیستور، ساختار بلورین آن تغییر می کند، و خاصیت هدایت الکتریسته ی آن بهتر می شود . اگر به سیلیکون، فلز بور اضافه کنید، سیلیکونِ مثبت یا نوعِ P ) P مخفف Positive ) تولید می شود که فاقدِ الکترون است . اگر به سیلیکون، فلز فسفر اضافه نمایند ، سیلیکونِ منفی یا نوع N ) N مخفف Negative ) به دست می آید که شامل تعداد بسیار زیادی الکترون آزاد است.

● حالت های قطع و وصل یک ترانزیستور

الف) ترانزیستورها از سه پایانه تشکیل می شوند : منبع ، گیت ، مخرج .

ب) در ترانزیستور نوع منفی ، هم منبع و هم مخرج بار منفی دارند و روی توده ای از سیلیکون نوع مثبت را گرفته اند .

ج ) هنگامی که ولتاژ مثبت به گیت وارد می شود ، الکترون های موجود در سیلیکون نوع مثبت ، جذب منطقه ی زیرینِ گیت می شوند ، و یک کانال الکترونیکی بین منبع و مخرج را شکل می دهند .

د) هنگامی که ولتاژ مثبت به مخرج وارد می شود ، الکترون ها از منبع جدا شده و به سمت مخرج می روند. در این حالت ، ترانزیستور ، وصل است.

ه) اگر ولتاژ از روی گیت برداشته شود ، الکترون ها جذبِ منطقه ی واقع بین منبع و مخرج نمی گردند . مسیر جریان از بین می رود ، و ترانزیستور به حالت قطع در می آید.

● ریزپردازنده ها چطور بر زندگی ما تاثیر می گذارند

کارکردِ باینری ترانزیستورها به پردازنده ها این قابلیت را می دهد که ماموریت های بسیاری را انجام دهند، از یک نامه نگاری ساده تا ویرایش فایل های ویدیویی. ریزپردازنده ها به نقطه ای رسیده اند که ترانزیستورها می توانند صدها میلیون دستورالعمل در ثانیه را روی یک تراشه ی واحد به اجرا در آورند . اتومبیل ها ، تجهیزات پزشکی ، تلویزیون ها ،کامپیوترها ، و حتا سفینه های فضایی از ریزپردازنده ها استفاده می کنند. همه ی آن ها متکی به گردش اطلاعات باینری هستند که به یمنِ وجودِ ترانزیستور ممکن گشته است.

ساختار و طرز کار ترانزیستور اثر میدانی ( فت )

همانگونه که از نام این المام مشخص است، پایه کنترلی آن جریانی مصرف نمی کند و تنها با اعامل ولتاژ و ایجاد میدان درون نیمه هادی ، جریان عبوری از  FET  کنترل می شود. به همین دلیل ورودی این مدار هیچ کونه اثر بارگذاری بر روی طبقات تقویت قبلی نمی گذارد و امپدانس بسیار بالایی دارد.

فت دارای سه پایه با نامهای درِین D - سورس S  و گیت G  است که پایه گیت ، جریان عبوری از درین به سورس را کنترل می نماید. فت ها دارای دو نوع N  کانال و P  کانال هستند. در  فت نوع N  کانال زمانی که گیت نسبت به سورس مثبت باشد جریان از درین به سورس عبور می کند . FET ها معمولاً بسیار حساس بوده و حتی با الکتریسیته ساکن  بدن نیز تحریک می گردند. به همین دلیل نسبت به نویز بسیار حساس هستند.

نوع دیگر ترانزیستورهای اثر میدانی MOSFET  ها هستند ( ترانزیستور اثر میدانی اکسید فلزی نیمه هادی - Metal-Oxide Semiconductor Field Efect Transistor  )  یکی از اساسی ترین مزیت های ماسفت ها نویز کمتر آنها در مدار است.

فت ها در ساخت فرستنده باند اف ام رادیو نیز کاربرد فراوانی دارند. برای تست کردن فت کانال N  با مالتی متر ، نخست پایه گیت را پیدا می کنیم. یعنی پایه ای که نسبت به دو پایه دیگر در یک جهت مقداری رسانایی دارد و در جهت دیگر مقاومت آن بی نهایت است. معمولاً مقاومت بین پایه درین و گیت از مقاومت پایه درین و سورس بیشتر است که از این طریق می توان پایه درین را از سورس تشخیص داد.

اگر ساده بخواهیم به موضوع نگاه کنیم عملکرد یک ترانزیستور را می توان تقویت جریان دانست. مدار منطقی کوچکی را در نظر بگیرید که تحت شرایط خاص در خروجی خود جریان بسیار کمی را ایجاد می کند. شما بوسیله یک ترانزیستور می توانید این جریان را تقویت کنید و سپس از این جریان قوی برای قطع و وصل کردن یک رله برقی استفاده کنید.

موارد بسیاری هم وجود دارد که شما از یک ترانزیستور برای تقویت ولتاژ استفاده می کنید. بدیهی است که این خصیصه مستقیما" از خصیصه تقویت جریان این وسیله به ارث می رسد کافی است که جریان وردی و خروجی تقویت شده را روی یک مقاومت بیندازیم تا ولتاژ کم ورودی به ولتاژ تقویت شده خروجی تبدیل شود.

 

اعمال ولتاژ با پلاریته موافق باعث عبور جریان از یک

پیوند PN می شود و چنانچه پلاریته ولتاژتغییر کند

جریانی از مدار عبور نخواهد کرد.

جریان ورودی ای که که یک ترانزیستور می تواند آنرا تقویت کند باید حداقل داشته باشد. چنانچه این جریان کمتر از حداقل نامبرده باشد ترانزیستور در خروجی خود هیچ جریانی را نشان نمی دهد. اما به محض آنکه شما جریان ورودی یک ترانزیستور را به بیش از حداقل مذکور ببرید در خروجی جریان تقویت شده خواهید دید. از این خاصیت ترانزیستور معمولا" برای ساخت سوییچ های الکترونیکی استفاده می شود.

همانطور که در مطلب قبل (اولین ترانزیستورها) اشاره کردیم ترانزستورهای اولیه از دو پیوند نیمه هادی تشکیل شده اند و بر حسب آنکه چگونه این پیوند ها به یکدیگر متصل شده باشند می توان آنها را به دو نوع اصلی PNP یا NPN تقسیم کرد. برای درک نحوه عملکرد یک ترانزیستور ابتدا باید بدانیم که یک پیوند          (Junction) نیمه هادی چگونه کار می کند.

 

از لحاظ ساختاری می توان یک ترانزیستور را با دو دیود مدل کرد.

در شکل اول شما یک پیوند نیمه هادی از نوع PN را مشاهده می کنید. که از اتصال دادن دو قطعه نیمه هادی P و N به یکدیگر درست شده است. نیمه هادی های نوع N دارای الکترونهای آزاد و نیمه هادی نوع P دارای تعداد زیادی حفره   (Hole) آزاد می باشند. بطور ساده می توان منظور از حفره آزاد را فضایی دانست که در آن کمبود الکترون وجود دارد.

اگر به این تکه نیمه هادی از خارج ولتاژی بصورت آنچه در شکل نمایش داده می شود اعمال کنیم در مدار جریانی برقرار می شود و چنانچه جهت ولتاژ اعمال شده را تغییر دهیم جریانی از مدار عبور نخواهد کرد (چرا؟).

این پیوند نیمه هادی عملکرد ساده یک دیود را مدل می کند. همانطور که می دانید یکی از کاربردهای دیود یکسوسازی جریان های متناوب می باشد. از آنجایی که در محل اتصال نیمه هادی نوع N به P معمولآ یک خازن تشکیل می شود پاسخ فرکانسی یک پیوند PN کاملآ به کیفیت ساخت و اندازه خازن پیوند بستگی دارد. به همین دلیل اولین دیودهای ساخته شده توانایی کار در فرکانسهای رادیویی - مثلآ برای آشکار سازی - را نداشتند.

معمولآ برای کاهش این خازن ناخاسته، سطح پیوند را کاهش داده و آنرا به حد یک نقطه می رسانند.

بصورت استاندارد دو نوع ترانزیستور بصورت PNP و NPN داریم. انتخاب نامه آنها به نحوه کنار هم قرار گرفتن لایه های نیمه هادی و پلاریته آنها بستگی دارد. هر چند در اوایل ساخت این وسیله الکترونیکی و جایگزینی آن با لامپهای خلاء، ترانزستورها اغلب از جنس ژرمانیم و بصورت PNP ساخته می شدند اما محدودیت های ساخت و فن آوری از یکطرف و تفاوت بهره دریافتی از طرف دیگر، سازندگان را مجبور کرد که بعدها بیشتر از نیمه هادیی از جنس سیلیکون و با پلاریته NPN برای ساخت ترانزیستور استفاده کنند. تفاوت خاصی در عملکرد این دو نمونه وجود ندارد و این بدان معنی نیست که ترانزیستور ژرمانیم با پلاریته NPN یا سیلیکون با پلاریته PNP وجود ندارد.

نماد و شماتیک پیوندها در ترانزیستورها

برای هریک از لایه های نیمه هادی که در یک ترانزیستور وجود دارد یک پایه در نظر گرفته شده است که ارتباط مدار بیرونی را به نیمه هادی ها میسر می سازد. این پایه ها به نامهای Base (پایه) ، Collector (جمع کننده) و Emitter (منتشر کننده) مشخص می شوند. اگر به ساختار لایه ای یک ترانزیستور دقت کنیم بنظر تفاوت خاصی میان Collector و Emitter دیده نمی شود اما واقعیت اینگونه نیست. چرا که ضخامت و بزرگی لایه Collector به مراتب از Emitter بزرگتر است و این عملا" باعث می شود که این دو لایه با وجود تشابه پلاریته ای که دارند با یکدیگر تفاوت داشته باشند. با وجود این معمولا" در شکل ها برای سهولت این دو لایه را بصورت یکسان در نظر میگیردند.

نمای واقعی تری از پیوندها در یک ترانزیستور که تفاوت

کلکتور و امیتر را بوضوح نشان می دهد.

بدون آنکه در این مطلب قصد بررسی دقیق نحوه کار یک ترانزیستور را داشته باشیم، قصد داریم ساده ترین مداری که می توان با یک ترانزیستور تهیه کرد را به شما معرفی کرده و کاربرد آنرا برای شما شرح دهیم. به شکل زیر نگاه کنید.

بطور جداگانه بین E و C و همچنین بین E و B منابع تغذیه ای قرار داده ایم. مقاومت ها یی که در مسیر هریک از این منابع ولتاژ قرار دادیم صرفا" برای محدود کردن جریان بوده و نه چیز دیگر. چرا که در صورت نبود آنها، پیوندها بر اثر کشیده شدن جریان زیاد خواهند سوخت.

طرز کار ترانزیستور به اینصورت است، چنانچه پیوند BE را بصورت مستقیم بایاس (Bias به معنی اعمال ولتاژ و تحریک است) کنیم بطوری که این پیوند PN روشن شود (برای اینکار کافی است که به این پیوند حدود 0.6 تا 0.7 ولت با توجه به نوع ترانزیستور ولتاژ اعمال شود)، در آنصورت از مدار بسته شده میان E و C می توان جریان بسیار بالایی کشید. اگر به شکل دوم دقت کنید بوضوح خواهید فهمید که این عمل چگونه امکان پذیر است. در حالت عادی میان E و C هیچ مدار بازی وجود ندارد اما به محض آنکه شما پیوند BE را با پلاریته موافق بایاس کنید، با توجه به آنچه قبلا" راجع به یک پیوند PN توضیح دادیم، این پیوند تقریبا" بصورت اتصال کوتاه عمل می کند و شما عملا" خواهید توانست از پایه های E و C جریان قابل ملاحظه ای بکشید. (در واقع در اینحالت می توان فرض کرد که در شکل دوم عملا" لایه PN مربوط به BE از بین می رود و بین EC یک اتصال کوتاه رخ می دهد.)

مدار ساده برای آشنایی با طرز کار یک ترانزیستور

بنابراین مشاهده می کنید که با برقراری یک جریان کوچک Ib شما می توانید یک جریان بزرگ Ic را داشته باشید. این مدار اساس سوئیچ های الکترونیک در مدارهای الکترونیکی است. بعنوان مثال شما می توانید در مدار کلکتور یک رله قرار دهید که با جریان مثلا" چند آمپری کار می کند و در عوض با اعمال یک جریان بسیار ضعیف در حد میلی آمپر - حتی کمتر - در مدار بیس که ممکن است از طریق یک مدار دیجیتال تهیه شود، به رله فرمان روشن یا خاموش شدن بدهید.

حال نقش ترانزیستور بعنوان یک تقویت کننده جریان را توضیح خواهیم داد :

Ie = Ib + Ic

راجع به مدار شکل اول در مطلب قبل توضیح دادیم و دیدیم که که چگونه با بایاس کردن پیوند کوچک بیس - امیتر می توان میان کلکتور و امیتر جریان بزرگی را برقرار کرد. بدون آنکه وارد معادلات پیچیده ریاضی شویم با دقت در شکل اول می توان برای نقطه ای که ترانزیستور قرار دارد جمع جبری جریان ها را معادل صفر قرار داد و از آن نتیجه بسیار جالب زیر را گرفت :

Ie = Ib + Ic

از شکل هم کاملآ مشخص است که جریان های ورودی به ترانزیستور - در حالت ایده آل - باید مساوی با جریان های خروجی باشد. این معادله بعد ها برای انجام محاسبات بایاسینگ یک ترانزیستور بسیار کاربرد خواهد داشت.

اگر در آزمایشگاه مدار فوق را با یک ترانزیستور معمولی بسته و پیوند بیس - امیتر را بایاس کنید خواهید دید که برای ولتاژ ثابت Vbe و Vce نسبت جریان عبوری از کلکتور به جریان بیس در محدوده ای که ترانزیستور بصورت خطی کار می کند و اشباع نشده است تقریبآ مقدار ثابتی است. به این مقدار ضریب تقویت جریان می گویند و اغلب آنرا با hfe نمایش می دهند، یعنی :

hfe = Ic / Ib

به شکل مقابل نگاه کنید این شکل برای یک بایاسینگ خاص ترانزیستور، نمودار جریان کلکتور به جریان بیس را نمایش می دهد. دقت کنید که چنانچه بایاسینگ ترانزیستور تغییر کند این نمودار نیز بالا و پایین رفته و نقاط اشباع و یا آستانه تقویت نیز تغییر خواهد کرد. همانگونه که مشاهده می کنید در محدوده سبز رنگ عملکرد ترانزیستور تقریبآ خطی بوده و می تواند جریان بیس را که در حد میکروآمپر است به جریان های چند صد میلی آمپر و حتی چند ده آمپر - بسته به نوع ترانزیستور - تبدیل کند. در این حالت ترانزیستور بعنوان یک تقویت کنند جریان با ضریب تقویت hfe بکار برده می شود.

در محدوده عملکرد خطی جریان کلکتور ضریبی از

جریان بیس خواهد بود.

دقت کنید که قسمت قرمز اولیه نمودار هنگامی است که پیوند بیس - امیتر از بایاسینگ مناسب برخوردار نیست و جریان کمی از این پیوند عبور می کند لذا جریان خروجی کلکتور نیز کم است و برعکس در قسمت قرمز انتهایی نمودار بایاسینگ ترانزیستور به گونه ای است که اصطلاحآ می گویند ترانزیستور اشباع شده و در این حالت عملکرد خطی ندارد و شکل موج تقویت شده را تغییر می دهد.

در طراحی مدارها مقادیر پارامتر هایی که از یک ترانزیستور انتظار می رود، مشخص شده و سپس طراح می تواند با مراجعه به کتابهای مشخصات ترانزیستور، ترانزیستور مورد نظر خود را انتخاب کند. این پارامترها عمومآ عبارتند از :

Ic Max : ماکزیمم جریان کلکتور (می تواند از حدود ۱۰۰ میلی آمپر تا چند ده آمپر باشد)

Vce Maz : ماکزیمم ولتاژ کلکتور- امیتر (می تواند از حدود ۲۰ ولت باشد تا حدود ۱۰۰ ولت)

hfe Min : حداقل ضریب تقویت جریان (از حدود ۱۰ برای ترانزیستورهای قدرت تا چند صد)

P Max : قدرت تحمل توان ماکزیمم (از حدود چند صد میلی وات تا حدود ۲۰۰ وات)

عمومآ مشخصات مداری برای شما مشخص می کند که از چه ترانزیستوری با چه پارامترهایی استفاده کنید.

چگونه نوع وپايه های يک ترانزيستور مجهول را ميتوان تشخيص داد؟

البته در بيشتر ديتاشيتها توضيح داده شده اما اگر ترانزيستور ناشناخته يا بدون مارک باشد با استفاده از يک مولتی متر ساده به صورت زير می توان تشخيص داد:

با توجه به اينکه مولتی متر يک باتری ۱.۵يا ۳ ولتی دارد وپراب قرمز به منفی باتری وپراب سياه به مثبت باتری (از داخل)وصل ميشود به صورت زير عمل ميکنيم:

نکته مهم:مولتی متر رو در رنج high ohmقرار دهيد (1k)

 پراب سياه رو روی يکی از پايه ها بذاريد و قرمز رو روی دو پايه ديگه اگر عقربه زياد حرکت کرد ترانزيستور از نوع npnاست.

اگر کم حرکت کرد پراب سياه رو روی پايه های ديگه بذاريد برای گرفتن نتيجه نهايی حداکثر ۶ بار اينو انجام بديد.

اگر عقربه دوباره حرکت نکرد جای پراب سياه و قرمز رو عوض کنيدو دوباره ازمايش بالا رو تکرار کنيددر اين حالت اگر عقربه برای هر دو پايه ديگه حرکت کرد ازنوع pnp است.

اگر برای هر دو پايه حرکت نکرد ترانزيستور openاست.

اگر برای همه تستها حرکت کند shortest است.

اگر برای يکی از تستها خيلی اروم حرکت کنه leaky است.

وقتی نوعش رو فهميديم پايه متصل شده به پراب سياه (در نوع ان پی ان) پايه بيس است ودر نوع ديگه پايه متصل شده به پراب قرمز پايه بيس است

برای پيدا کردن کلکتور واميتر از روش tutاستفاده ميکنيم و در واقع ساده ترين امپلی فاير جهان رو ميسازيم در نوع npn(سياه به کلکتور وقرمز به اميتر )به وسيله يک انگشت بين c,bاتصال برقرار کنيد عقربه ۸۰درصد تغيير جهت ميدهد در اين حالت پايه اميتر نبايد با بدن تماس داشته باشد

در واقع در اين عمل ترانزيستور جريانی که بدن شما به بيس ميدهد رو تقويت ميکنه و جريان حدود صد برابر ميشود ودر مدار کلکتور واميتر جاری ميشه واين جريان زياد مقاومت بين دو پايه رو کاهش ميده و مولتی متر نتيجه رو نشون ميده

در(pnp):سياه به اميتر و قرمز به کلکتور وصل شده ومثل بالا عمل ميشود

اگر از اين روش برای ترانزيستوری که در مدار وصل است استفاده ميکنيد بايد تغذيه خاموش باشه وخازن ها شارژشونو از دست داده باشن

اين روش کاملا عملی است و در ابتدا کمی پيچيده به نظر ميرسه اما اگه روی ترانزيستوری که برای شما شناخته شدست اولين بار آزمايش کنيد  خيلی آسون ميشه

معرفی چند ترانزیستور

+ نوشته شده در  88/02/02ساعت 15:0  توسط امیر  |